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Introduction

Young Tableau: A Young tableau is a combinatorial object formed by filling the boxes of a Young
diagram (a left-aligned grid of boxes with non-increasing row lengths) with positive integers.

= Rows are weakly increasing (left to right)
= Columns are strictly increasing (top to bottom)

Standard Young Tableau: A standard Young tableau is a Young tableau that:

= Fills the boxes with the numbers from 1 to n (where n is the total number of boxes)
= Entries increase strictly across rows and columns
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The total number of tableaux can be efficiently computed using the Hook Length Formula, [1]: For
a fixed shape Young diagram with n boxes, the number of standard tableaux is n! divided by the product
of the hook lengths of the boxes.

g

Hook Length is 3

Hook Length is 4

The main goal of this research is to study the enumeration of n x n standard tableaux where the
diagonals are fixed to be perfect squares by using different strategies and explore their connections
to other combinatorial structures.
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Standard Young Tableau Standard Young Tableau with fixed diagonals

Observation and L-Shape

The number of possible fillings for an n x n tableau ranges from 1 to n?.

Observe that once the diagonals are fixed, counting the possible fillings for an nxn standard tableau

can be expressed with the possible combinations in the associated L-shape. It follows from the

standard tableau definition that the filling range for the associated L-shape is from (n — 1)2 +1to
2

n® — 1.
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For example, after initializing the case for n = 2, the remaining choices to be counted for n = 3 are
limited to the L-shape, with possible fillings being 5,6, 7, and &.

This observation leads to a recursive relationship between (n — 1) x (n — 1) and n x n standard
tableaux.
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Enumeration

In order to determine the total number of standard Young tableaux under the fixed diagonal con-
straint, denoted by fy,, first, the admissible fillings in the L-shape region were manually counted for
the value of n from 1 to 5. This number will be denoted by [,,.

fn was then obtained by multiplying the total combinations for (n —1) x (n — 1) with the admissible
fillings of L-shape for n, establishing a recursive relation:
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L-shape and Standard Young tableau combinations for small values of n

Python Code for Counting Specific Tableaux

def countValidArrangementsNxN(n):
# Define cells array which needs to be filled
cells = []
for i in range(1l, n):
cells.append((i, n))
for j in range(l, n):
cells.append((n, j))

numbers = list(range((n-1)**2 + 1, n%*%*2))
count = O
# Iterate over all possible orders that the numbers can be arranged
# 1like (b, 6, 7, 8); (8, 7, 6, 5) for n = 3
for perm in permutations(numbers):
# Pairs each cell with a number from that perm
assignment = dict(zip(cells, perm))
assignment[(n,n)] = n**2 # Fix bottom-right corner
valid = True
for i in range(1l, n-1):
if (assignment[(i, n)] >= assignment[(i + 1, n)]) or
(assignment[(n, i)] >= assignment[(n, 1 + 1)]):
valid = False
break
if valid:

count += 1

return count
def youngTableauCount(n):
if n ==
return 1
else:
return countValidArrangementsNxN(n) * youngTableauCount(n - 1)

Results and Verification

After counting the L-shape tableaux and total tableaux manually and comparing them with the
output from the Python program, the values matched perfectly for n = 1 through n = 5. The code
also gave values for n = 6 as:

6 =252 &  fs=4,233,600.

Combinatorics of Young Tableaux with Perfect Diagonals

Some Results

The number of admissible fillings of L-shape can be given by the Central Binomial Coefficients:
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These numbers are also known as the Type B Catalan Numbers.

Moreover, the total number of n x n standard tableaux under the fixed diagonal constraint is de-

termined by the Geometric Product:
n
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Note: While both of these formulas are conjectured with the help of OEIS, they have not been
proven yet.

Tableaux with Defects

A new notion was introduced as follows: a tableau is said to have a 1-defect if the entry (n —1)%+2
is replaced by (n — 1)2 + 1 within the associated L-shaped region. The number of valid tableaux
was subsequently recomputed to reflect this change.
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L-shape with one defect
at position (n — 1) + 2

L-shape (no defect)

The resulting counts were:

n|l, = L-shape (with no defect) L-shape (with 1-defect)
1 1 0

? ? 1

3 6 4

4 20 14

5 70 50

6 252 182

Comparison of L-shape combinations with and without 1-defect

These numbers can be expressed as a first difference of [,,s:
#1L-shape with 1-defect =1,, — {,,_1
Moreover, OEIS leads to the formula:
# L-shape with 1-defect = (3n — 2) - C), 4

where ), denotes the n-th Catalan number.
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