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From Observation to Abstraction

When electrons are sent toward a barrier with two slits, the resulting

pattern on the screen suggests an interference effect—not from the elec-

trons behaving as classical waves, but from the probabilistic nature en-

coded in their quantum description. This experiment illustrates a core

principle of quantum mechanics: particles are governed not by definite

trajectories, but by probability amplitudes defined by the wavefunction

ψ(x).

Wavefunction: The Core Descriptor

Figure 1. Visual representation of a wavefunction showing its real component (red),

imaginary component (blue), and the probability density function (black).

Awavefunction ψ(x) is a mathematical representation of a particle, hold-
ing all the information about a quantum system.

Mathematical Properties:

A wavefunction is a complex-valued function:

ψ(x) = Re(ψ(x)) + i Im(ψ(x))

whose squared magnitude |ψ(x)|2 gives the probability density of finding
the particle at position x . For normalization:∫ ∞

−∞
|ψ(x)|2dx = 1.

This probabilistic framework underpins all quantum models.

Time-Dependent Schrödinger Equation (TDSE)

The Schrödinger equation governs how the wavefunction evolves in

time. The TDSE represents a fundamental eigenvalue problem:

i~
∂

∂t
ψ(x, t) = Ĥψ =

(
− ~2

2m
∂2

∂x2 + V (x)

)
ψ(x)

where: ψ(x) is an eigenfunction and Ĥ is the Hamiltonian operator.

Example: The Centrifugal Potential

i~
∂ψ(x, t)
∂t

=

[
− ~2

2m
∂2

∂x2 + 1
x2

]
ψ(x, t)

Green’s Function Method and Motivation

The Green’s function G(x, x′; t) is a powerful tool for solving the time-
dependent Schrödinger equation:

ψ(x, t) =
∫ ∞

−∞
G(x, x′; t)ψ(x′, 0) dx′

It evolves the wavefunction in time via the equation:

i~
∂

∂t
G(x, x′; t) = ĤG(x, x′; t), G(x, x′; 0) = δ(x− x′)

Alternatively, G(x, x′; t) can be expressed in terms of eigenfunctions and
eigenvalues:

G(x, x′; t) =
∑
n

φn(x)φ∗
n(x′) e−iEnt/~

= 〈x|e−iĤt/~|x′〉

However, this form depends critically on knowing exact eigenfunctions

φn(x) and eigenvalues En.

The Challenge

For V (x) = 1
x2: Even though the formalism is elegant, computing

G(x, x′; t) becomes intractable when eigenfunctions are difficult or im-
possible to obtain.

⇒ What if we could eliminate the potential instead?

Rather than solving the Schrödinger equation directly, we ask: Can we

transform theHamiltonian in away that removes the potential term, mak-

ing it easier to track eigenfunctions and construct Green’s functions an-

alytically?

What ifWe Transform Instead of Solve?

Ĥ = p2

2
+ V (x) → P, where P is a simplified, solvable operator

By reducing the Hamiltonian to an elementary operator without a po-

tential, we shift the problem from solving to transforming—then build

the Green’s function from the simplified form.

Research Question

Can these transformations be generalized?

Furthermore, can they be extended into a unified, systematic framework

for solving a wider range of quantum systems?

Introducing Elementary Transformations

In 2006, Tsaur and Wang proposed a set of transformations—called el-

ementary transformations—that serve as algebraic manipulations on the

Hamiltonian while preserving the fundamental operator structure of

quantum mechanics.

Interchange Transformation (I): Swaps position (x) and momentum
(p), useful in problems with symmetric roles.
Similarity Transformation (S): Applies a unitary operator U to change
the basis, resulting in Ĥ ′ = U†ĤU .

Point Canonical Transformation (P): Rewrites variables x → f (x) to
simplify the potential function V (x).
x-Linear Transformation (Lx): Adjusts the position operator
algebraically via linear combinations of x and p.

These transformations are not just formal tricks, they allow us to ana-

lytically reduce unsolvable Hamiltonians while maintaining key physical

relationships like commutation relations.

Elementary Transformations in Action

To reduce complex quantum systems into elementary ones, we apply

a structured sequence of algebraic transformations that preserve the

Hamiltonian’s operator structure while eliminating the potential term.

Step 1: Point Transformation P
Change of variables: (p, x) =

(
2√

x1 p1,
√
x1
)

H = p2

2
+ 1
x2

= 2 (√x1 p1)2 + 1
x1

= H1

Step 2: Similarity Transformation S
Change of variables: (p1, x1) =

(
p2 + iβ

x2
, x2
)
, where β = −1±

√
1+8

4

Use identity: [p2,
1
x2

] = i

x2
2

H1 → 2(√x2 p2)2 + 4i β p2 −

(
2β2 + β

x2

)
= H2

Step 3: x-Linear Transformation Lx
Key identity: [p2,

√
x2] = −i

2√
x2

(√x2 p2)2 = √
x2 (√x2 p2 + [p2,

√
x2]) p2

= p2
2 x2 + 3 i p2

2
⇒ H3 = 2 p2

2 x2 + i (4β + 3) p2

Final Simplified Hamiltonian

H3 = 2Lz + iγp2, where Lz = p2
2x2, γ = 4β + 3

This transformed Hamiltonian is now elementary and solvable, enabling

construction of the Green’s function from a simplified form.

An ’Elementary’ Framework

The Commutator and Canonical Structure Verification

The commutator [p̂, x̂] = −i~ is a foundational concept in quantum me-
chanics. Transformations such as P and S preserve this structure:
Lemma: Let (P,X) = T (p, x) where T ∈ {S,P}. Then:

[P,X ] = [p, x]
This ensures the uncertainty principle and quantum behavior are pre-

served throughout transformations.

Supporting identities:

[p2, x2] = −i — canonical form preserved[
p2,

1
x2

]
= i
x2

2
— used in S[

p2,
√
x2
]

= −i
2√

x2
— used in Lx

Future Direction

We are expanding this method to handle more complex systems:

Anharmonic Oscillators: V (x) = ax2 + bx4 + cx6

Morse Potential: V (x) = De(1 − e−a(x−xe))2

Double-Well: V (x) = a(x2 − b2)2

Our goal is to construct exact Green’s functions even when the potential

is nonlinear or nontrivial.
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