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Example: The Centrifugal Potential
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When electrons are sent toward a barrier with two slits, the resulting
pattern on the screen suggests an interference effect—not from the elec-
trons behaving as classical waves, but from the probabilistic nature en-
coded in their guantum description. This experiment illustrates a core
principle of quantum mechanics: particles are governed not by definite
trajectories, but by probability amplitudes defined by the wavefunction

().

Wavefunction: The Core Descriptor
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Green’s Function Method and Motivation

Figure 1. Visual representation of a wavefunction showing its real component (red),
imaginary component (blue), and the probability density function (black).

Awavefunction ¢ (x) is a mathematical representation of a particle, hold-
ing all the information about a quantum system.

Mathematical Properties:

A wavefunction is a complex-valued function:

() =Re(¥(x)) + i Im(¢(z))
whose squared magnitude \w(x)\Q gives the probability density of finding
the particle at position x . For normalization:
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This probabilistic framework underpins all quantum models.

Time-Dependent Schrédinger Equation (TDSE)

The Schrodinger equation governs how the wavefunction evolves in
fime. The TDSE represents a fundamental eigenvalue problem:
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where: ¥(z) is an eigenfunction and H is the Hamiltonian operator.

The Green'’s function G(x,2':t) is a powerful tool for solving the time-
dependent Schrodinger equation:

P(x,t) = /OO Gz, 2 t)y(2,0) da’
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't evolves the wavefunction in time via the equation:

ih%G(x, o' t) = HG(z,2";t), G(z,2',0) = 6(x — ')

Alternatively, G(z, 2’: t) can be expressed in terms of eigenfunctions and
eigenvalues:
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However, this form depends critically on knowing exact eigenfunctions
¢n(x) and eigenvalues E,.

The Challenge

For V(x) = é: Fven though the formalism is elegant, computing

G(x,2':t) becomes intractable when eigenfunctions are difficult or im-
possible to obtain.

= What if we could eliminate the potential instead?

Rather than solving the Schrodinger equation directly, we ask: Can we
transform the Hamiltonian in a way that removes the potential term, mak-
ing it easier to track eigenfunctions and construct Green'’s functions an-
alytically?

What if We Transform Instead of Solve?

2
% +V(z) — P, where Pis asimplified, solvable operator
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By reducing the Hamiltonian to an elementary operator without a po-
tential, we shift the problem from solving to transforming—then build
the Green’s function from the simplified form.

Research Question

Introducing Elementary Transformations

In 2006, Tsaur and Wang proposed a set of transformations—called el-
ementary transformations—that serve as algebraic manipulations on the
Hamiltonian while preserving the fundamental operator structure of
quantum mechanics.

= Interchange Transformation (Z): Swaps position (z) and momentum
(p), useful in problems with symmetric roles.

= Similarity Transformation (S): Applies a unitary operator U to change
the basis, resulting in H' = UTHU..

= Point Canonical Transformation (P): Rewrites variables x — f(x) to
simplify the potential function V(z).

= r-Linear Transformation (L£,): Adjusts the position operator
algebraically via linear combinations of x and p.

These transformations are not just formal tricks, they allow us to ana-
lytically reduce unsolvable Hamiltonians while maintaining key physical
relationships like commutation relations.

Elementary Transformations in Action

Can these transformations be generalized?

Furthermore, can they be extended into a unified, systematic framework
for solving a wider range of quantum systems?

To reduce complex quantum systems into elementary ones, we apply
a structured sequence of algebraic transformations that preserve the
Hamiltonian’s operator structure while eliminating the potential term.

Step 1: Point Transformation P
Change of variables: (p, z) = (2\/Z1 p1, \/Z1)
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Step 2: Similarity Transformation S
Change of variables: (p1,z1) = (p2 1 %7 xQ) where 3 = —1j:4\/1+8

= Use identity: [po, %2] = %
2

2
Hy — 2(y/T2p2)* + 4i Bpo — (25 +5> = Hy
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Step 3: z-Linear Transformation £,
Key identity: [p2, /72| = 2\_/%2

(VT2 p2)° = /T2 (/T2 02 + [p2, \/T3]) P2
31 P9
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= Hq = 2p%x2+i(4/5’+3)p2
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Final Simplified Hamiltonian

Hy =2L,+1ypy, wWhere L, = p%xg, v=45+ 3

This transformed Hamiltonian is now elementary and solvable, enabling
construction of the Green’s function from a simplified form.

An 'Elementary’ Framework
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The Commutator and Canonical Structure Verification

The commutator [p, | = —ih is a foundational concept in quantum me-
chanics. Transformations such as P and S preserve this structure:

Lemma: Let (P, X) =T (p,x) where T € {S,P}. Then:
P, X] = |p,z]
This ensures the uncertainty principle and quantum behavior are pre-
served throughout transformations.
Supporting identities:

= |p9, 9] = —i — canonical form preserved
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" |p2, \/72] = 2\_/% — used in L,

Future Direction

We are expanding this method to handle more complex systems:

= Anharmonic Oscillators: V(z) = az? + bz* + caf

= Morse Potential: V(x) = De(1 — fz_a(‘%_‘/’[”e))2
= Double-Well: V(x) = a(:z:2 — b2)2

Qur goal is to construct exact Green’s functions even when the potential
Is nonlinear or nontrivial.
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