

## Introduction

- Corrales Garcia et al. in [1] show that if  $Q_1$  and  $Q_2$  are row-finite quivers with no sinks, then there is an isomorphism between the cross product algebra  $L_{\mathbb{K}}(Q_1) \otimes_G L_{\mathbb{K}}(Q_2)$  and the Leavitt path algebra  $L_{\mathbb{K}}(Q_1 \times Q_2)$  where  $Q_1 \times Q_2$  is not the usual product of quivers but a special kind of product. In fact, this special product  $Q_1 \times Q_2$  mentioned in Corrales Garcia et al. [1] turns out to be the Kronecker product of quivers  $Q_1$  and  $Q_2$ .
- Let  $\mathcal{A}_{\mathbb{K}}(Q)$  be the quotient algebra of face algebra  $\mathcal{H}_{\mathbb{K}}(\overline{Q})$  by the Cuntz-Krieger type relations. This algebra  $\mathcal{A}_{\mathbb{K}}(Q)$  turns out to be isomorphic to Leavitt path algebra over a new quiver called the Kronecker square  $\widehat{Q}$ .

## Approach

The Kronecker product of quivers was defined by Weichsel in [2]. He describes the Kronecker product of two quivers  $Q_1$  and  $Q_2$  as a quiver  $Q_1 \otimes Q_2$  whose adjacency matrix  $A_{Q_1 \otimes Q_2}$  is the Kronecker product of adjacency matrices  $A_{Q_1}$  and  $A_{Q_2}$ . The Kronecker product of a quiver  $Q$  with itself,  $Q \otimes Q$ , is called the Kronecker square of  $Q$  and denoted as  $\widehat{Q}$ .

Let  $Q = (Q_0, Q_1, s, r)$  be a quiver. The Kronecker square  $\widehat{Q} = (\widehat{Q}_0, \widehat{Q}_1, \widehat{s}, \widehat{r})$  is given by

$$\begin{aligned}\widehat{Q}_0 &= \{[v_i, v_j] : v_i, v_j \in Q_0\}; \\ \widehat{Q}_1 &= \{[e_i, e_j] : e_i, e_j \in Q_1\}; \\ \widehat{s}([e, f]) &= [s(e), s(f)]; \\ \widehat{r}([e, f]) &= [r(e), r(f)].\end{aligned}$$

## Example

Let  $Q$  be a Toeplitz quiver:

$$A_Q = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow A_{\widehat{Q}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\widehat{Q} : \begin{array}{c} [e_{1, e_1}] \\ \curvearrowright \\ [v_1, v_1] \xrightarrow{[e_1, e_2]} [v_1, v_2] \\ \downarrow [e_2, e_1] \\ [v_2, v_1] \xrightarrow{[e_2, e_2]} [v_2, v_2] \end{array}$$

Hence,

## Definition

Let  $Q = (Q_0, Q_1, r, s)$  be a finite quiver and its Kronecker square be  $\widehat{Q} = (\widehat{Q}_0, \widehat{Q}_1, \widehat{r}, \widehat{s})$ . Let  $K$  be any field. The Leavitt path algebra  $L_{\mathbb{K}}(\widehat{Q})$  is a  $K$ -algebra generated by  $\{[v_i, v_j], [e_i, e_j], [e_i^*, e_j^*] : v_i \in Q_0, e_i \in Q_1\}$  subject to the following relations:

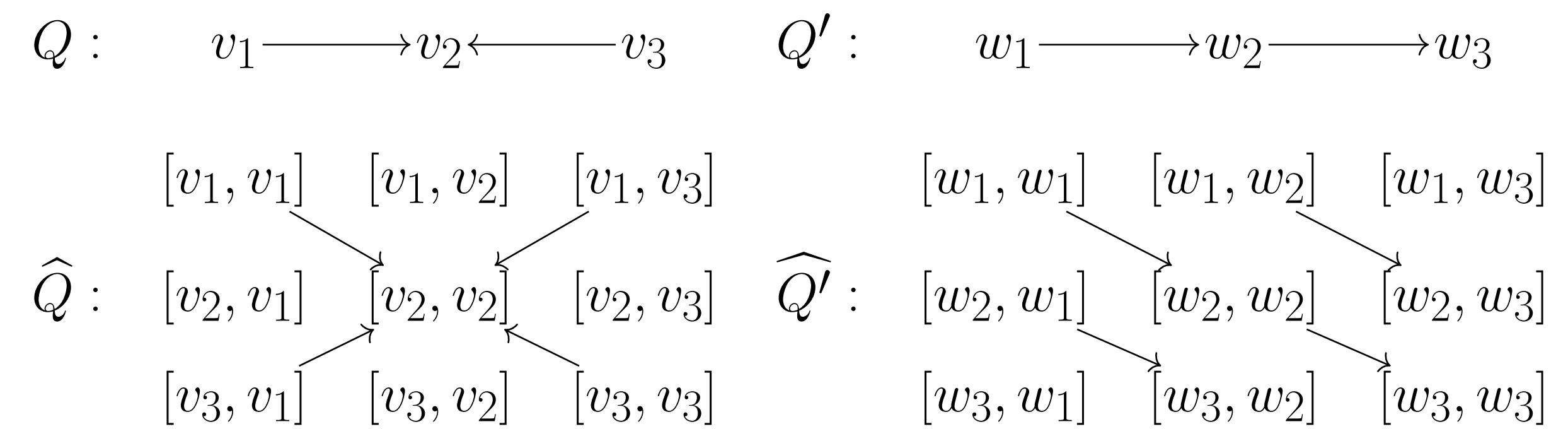
- $[v_i, v_j][v_{i'}, v_{j'}] = \delta_{i, i'}\delta_{j, j'}[v_i, v_j]$  for each  $v_i, v_j, v_{i'}, v_{j'} \in Q_0$ .
- $[s(e), s(f)][e, f] = [e, f]$  and  $[e, f][r(e), r(f)] = [e, f]$  for each  $e, f \in Q_1$ .
- $[e_i^*, e_j^*][e_{i'}, e_{j'}] = \delta_{i, i'}\delta_{j, j'}[r(e_i), r(e_j)]$  for each  $e_i, e_j, e_{i'}, e_{j'} \in Q_1$ .
- If  $v_i, v_j$  are both regular vertices, then  $[v_i, v_j] = \sum_{\substack{v_i = s(e_i) \\ v_j = s(e_j)}} [e_i, e_j][e_i^*, e_j^*]$ .

## Kronecker square of a quiver and its combinatorics

Let  $Q$  be a quiver and  $\widehat{Q}$  its Kronecker square. Then, the following statements hold.

- $Q$  is finite if and only if  $\widehat{Q}$  is finite. In fact,  $|\widehat{Q}_0| = |Q_0|^2$  and  $|\widehat{Q}_1| = |Q_1|^2$ .
- $Q$  is acyclic if and only if  $\widehat{Q}$  is acyclic.
- A quiver  $Q$  satisfies the Condition (L) if and only if its Kronecker square  $\widehat{Q}$  satisfies the Condition (L).
- A quiver  $Q$  satisfies the Condition (K) if and only if  $\widehat{Q}$  satisfies the Condition (K).
- A quiver  $Q$  has no source or sink if and only if its Kronecker square  $\widehat{Q}$  has no source or sink.
- Let  $Q$  be a finite quiver s.t. the cycles  $c_i$  of length  $l_i$  have no exit, then  $\sum_{i, j \geq 1} \gcd[l_i, l_j]$  where  $l_i$  and  $l_j$  are length of cycles  $c_i$  and  $c_j$  respectively, gives the number of cycles without exit in  $\widehat{Q}$ .
- A quiver  $Q$  has the countable separation property if and only if  $\widehat{Q}$  has the countable separation property.
- Let  $d_1, d'_1$  be the maximal length of a chain of cycles in  $Q, \widehat{Q}$ , respectively, and let  $d_2, d'_2$  be the maximal length of a chain of cycles with an exit in  $Q, \widehat{Q}$ , respectively. If  $d_1 = k$  for a positive integer  $k$ , then
  - $d'_1 = 2k - 1$ ,
  - if  $d_2 < d_1$ , then  $d'_2 = 2k - 2$ , otherwise  $d'_2 = 2k - 1$ .

## Example



## Ring theoretic properties of Leavitt path algebra over Kronecker square

### Theorem:

Let  $Q$  be a quiver, and  $\widehat{Q}$  its Kronecker square. Then

- $L_{\mathbb{K}}(Q)$  is von Neumann regular if and only if  $L_{\mathbb{K}}(\widehat{Q})$  is von Neumann regular.
- $L_{\mathbb{K}}(Q)$  is a left/right noetherian ring if and only if  $L_{\mathbb{K}}(\widehat{Q})$  is left/right noetherian.
- $L_{\mathbb{K}}(Q)$  is a left/right artinian ring if and only if  $L_{\mathbb{K}}(\widehat{Q})$  is left/right artinian.
- $L_{\mathbb{K}}(\widehat{Q})$  is a prime (primitive) ring then  $L_{\mathbb{K}}(Q)$  is a prime (primitive) ring.
- $L_{\mathbb{K}}(Q)$  has finite polynomially bounded growth if and only if  $L_{\mathbb{K}}(\widehat{Q})$  has polynomially bounded growth.
- For a finite quiver  $Q$ , if  $\text{GKdim}(L_{\mathbb{K}}(Q)) = n$ , then

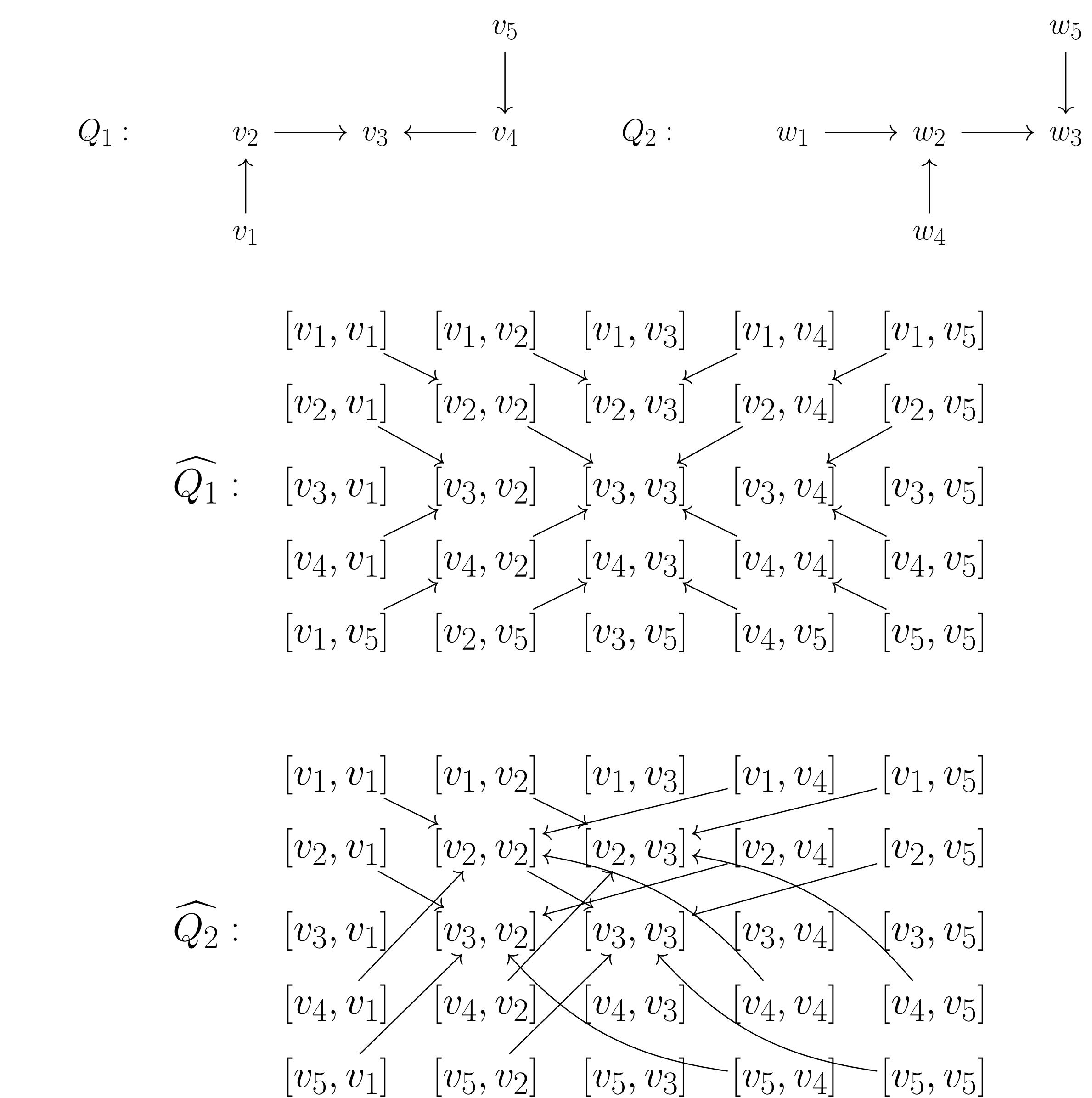
$$\text{GKdim}(L_{\mathbb{K}}(\widehat{Q})) = \begin{cases} 2n - 1, & n \text{ is odd} \\ 2n - 2, & n \text{ is even} \end{cases}$$

## Isomorphisms between Leavitt path algebras

Questions: Suppose  $Q_1$  and  $Q_2$  are two quivers such that

- If  $L_{\mathbb{K}}(Q_1) \cong L_{\mathbb{K}}(Q_2)$ , does it imply that  $L_{\mathbb{K}}(\widehat{Q}_1) \cong L_{\mathbb{K}}(\widehat{Q}_2)$ ?
- If  $L_{\mathbb{K}}(Q_1) \cong_{gr} L_{\mathbb{K}}(Q_2)$  does it imply that  $L_{\mathbb{K}}(\widehat{Q}_1) \cong_{gr} L_{\mathbb{K}}(\widehat{Q}_2)$ ?
- If  $L_{\mathbb{K}}(\widehat{Q}_1) \cong L_{\mathbb{K}}(\widehat{Q}_2)$  does this imply that  $L_{\mathbb{K}}(Q_1) \cong L_{\mathbb{K}}(Q_2)$ ?
- If  $L_{\mathbb{K}}(\widehat{Q}_1) \cong_{gr} L_{\mathbb{K}}(\widehat{Q}_2)$  does it imply that  $L_{\mathbb{K}}(Q_1) \cong_{gr} L_{\mathbb{K}}(Q_2)$ ?

## Example



## Future Work

- Investigate how to determine whether a given quiver can be realized as the Kronecker square of another quiver, and in such cases, how to reconstruct a quiver from its Kronecker square.
- Determine the number of cycles in  $\widehat{Q}$  corresponding to given cycles in a quiver  $Q$ .

## Acknowledgement

I would like to thank my advisor, Dr. Ashish Srivastava, for his continuous guidance and support throughout this research. I am also grateful to the Mentoring Math Minds Team for their encouragement and valuable feedback.

## References

- [1] María Guadalupe Corrales García, Dolores Martín Barquero, and Cándido Martín González. On the gauge action of a leavitt path algebra. *Kyoto Journal of Mathematics*, 55(2), June 2015.
- [2] Paul M Weichsel. The kronecker product of graphs. *Proceedings of the American Mathematical Society*, 13(1):47–52, 1962.