Leavitt Path Algebra over Kronecker Square of Quivers
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Introduction Kronecker square of a quiver and its combinatorics Isomorphisms between Leavitt path algebras

e Corrales Garcia et al. in [1] show that if @1 and Q9 are row-finite quivers with no sinks, then , ~ . , , ,
there is an isomorphism between the cross product algebra Ly (Q1) ® g Li(Q2) and the Leavitt Let @) be a quiver and @) its Kronecker square. Then, the following statements hold. Questions: Suppose ()1 and ()9 are two quivers such that
path algebra LK(Q.l X Q2>. where ()1 x Q9 IS not th@ usua.l product of qui\(ers but a special kind of 1. Qis finite if and only if @ s finite. In fact. @\O| _ \Q0|2 i @\1‘ _ \Q1|2. 1. If Lr(Q1) & Li(Q), does it imply that LK@\l) ~~ LK(@>7
product. In fact, this special product Q1 x QY92 mentioned in Corrales Garcia et al. [1] turns out to . o o . o
be the Kronecker product of quivers Qq and Qo. 2. @) is acyclic if and only if @) is acyclic. 2. If Lr(Q1) =gr Lr(Q2) does it imply that LK( 1) Zgr LK(QQ)
o Let A (Q) be the quotient algebra of face algebra Hx(Q) by the Cuntz-Krieger type relations. 3. A qUOil\/er Q( s)aﬁsﬁes the Condition (L) if and only if its Kronecker square @ satisfies the If Lg(Q1) = L (Q2) does this imply that L (Q1) = Lk (Q9)?
: - : : : Condition (L).
This algebra Ak (Q) turns out to be isomorphic to Leavitt path algebra over a new quiver called | | N | o N 4 |f LK(Ql) = LK(Q2> does it imply that LK(Ql) =~ (Qz)
the Kronecker square Q. 4. A quiver @ satisfies the Condition (K) if and only if @ satisfies the Condition (K).
) 5. A quiver () has no source or sink if and only if its Kronecker square @ has no source or sink.
Approach 6. Let Q) be a finite quiver s.t. the cycles ¢; of length [; have no exit, then Z ged|l;, 1] where [ Example
0 (U5 wr,
The Kronecker product of quivers was defined by Weichsel in [2]. He describes the Kronecker 9] | C of cvl q ol o . her of Z’jlzl h LA
oroduct of two quivers Q1 and Qs as a quiver Q; ® Qs whose adiacency matrix AQ1®Q2 i« the and (; are length of cycles ¢; and ¢; respectively, gives the number of cycles without exit in Q. l l
Kronecker product of adjacency matrices AQland AQQ. The Kronecker product of a quiver Q with 7. A quiver @ has the countable separation property if and only if Q has the countable Q1 : V9 — U3 —— U4 (o : wy — w9 —— W3
itself, Q ® @, is called the Kronecker square of () and denoted as Q). separation property. T T
Let Q = (Qo, Q1, s, 7) be a quiver. The Kronecker square Q = (Qq, Q1, 5, 7) is given by 8. Let dy, d) be the maximal length of a chain of cycles n @, Q. respectively, and let do, d, be the vy wy
maximal length of a chain of cycles with an exit in Q, ), respectively. If d; = k for a positive
integer k, then
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s( e, D =[s(e), s(f)]; 2. ifdy < dy , then d), = 2k — 2, otherwise d, = 2k — 1. U2, U] U2, U9 U2, U3 U2, U4 U2, U5
lle, f1) =lr(e), r(f). N N
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Let @) be a Toeplitz quiver: v; —— w9 whose adjacency matrix is Q ; (] >V < U3 Q ; w1 > W9 > W3
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v, V1 [v2, V2 Ring theoretic properties of Leavitt path algebra over Kronecker square
Theorem: 1. Investigate how to determine whether a given quiver can be realized as the Kronecker square
Let Q be a quiver, and @ its Kronecker square. Then of another quiver, and in such cases, how to reconstruct a quiver from its Kronecker square.
befiniton ... AR S | > Determine the number of cycles in O corresponding to given cycles in a quiver Q.
Let Q = (Qo, Q1, 7, s) be a finite quiver and its Kronecker square be @ = (Qo,Q1,7,5). Let K be > (@) 15 viem Neumemi eI i amel ey i (@) IS/\iOﬂ SHmann FegUiar.
i M) i _ 2. L Is a left/right noetherian ring if and only if L s left/right noetherian.
any field. The Leziwt£ path algebra Lk (Q) is a K-algebra generfated by. | K(Q) g g Y AK(@ g Acknowledgement
{vi, vjl, leis el €5 ej] - v; € Qo, ¢; € Q1} subject to the following relations: 3. Lg(Q) is a left/right artinian ring if and only if Lg(Q) is left/right artinian. , , , , , , ,
o | o | | | o . | would like to thank my advisor, Dr. Ashish Srivastava, for his continuous guidance and support
" v, vjllvy, v = 6; 405 i, vs] for each vy, vg, vy, vy € Qo 4. Lg(Q) is a prime (primitive) ring then Lk (Q) is a prime (primitive) ring. throughout this research. | am also grateful to the Mentoring Math Minds Team for their
= [s(e), s()lle, f] = le, f] and [e, fl[r(e), 7(f)] = [e, f] for each e, f € Q. 5. Lg(Q) has finite polynomially bounded growth if and only if LK(@) has polynomially encouragement and valuable feedback.

bounded growth.

" le;, exlleyr e = 6; 405 irlrles), rie;)] for each e, 5, e, €50 € Q1.
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/ / 7 6. For a finite quiver @, if GKdim(Lgk(Q)) = n, then A e
= |f v;,v; are both regular vertices, then |v;, v;] = E le;, eiller, er].
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