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Introduction

This project focuses on classification of HF radio signals using spectrogram images produced by

the Short-Time Fourier Transform (STFT), and a Convolutional Neural Network (CNN).

The workflow converts raw complex IQ samples into 2D time-frequency representations, which

are then fed into a CNN classifier. Future work will incorporate a Genetic Algorithm for Neural

Architecture Search (GA-NAS) to optimize CNN layer hyperparameters.

Dataset

Total signal vectors: 172, 800
Each vector: 2048 complex IQ samples
Duration per signal: 340 ms
Sampling frequency: 6 kHz
SNR levels in dataset: {25, 20, 15, 10, 5, 0, −5, −10}dB

Short-Time Fourier Transform (STFT)

STFT is used to obtain a time-frequency representation of non-stationary signals by computing

the Fourier transform on short, overlapping windows of the signal.

Window length: nperseg = 2048
Python call example: f, t

Sxx = stft(iq_samples, fs=fs, nperseg=nperseg, noverlap=noverlap)

Output: frequency bins (f), time segments (t), STFT complex matrix (Sxx).

X(t, f ) =
∞∑

n=−∞
x[n]w[n − t]e−j2πfn

where:
x[n] : discrete signal (IQ samples),
w[n − t] : window function (e.g., Hamming or Hann window) centered at time t,
f : frequency variable.

Spectrogram

A spectrogram visualizes the magnitude (or power) of frequency components over time (time on

the x-axis, frequency on the y-axis, intensity as color). It is produced by taking the magnitude (or

dB) of each STFT column and plotting as an image. Spectrograms are central features for the CNN

classifier in this project.[3][4]

CNN-based Classifier (Pipeline)

The baseline CNN consisted of multiple convolutional layers followed by batch

normalization, ReLU activations, and max pooling, culminating in fully connected layers with

a softmax output for multi-class HF signal classification.

Training used categorical cross-entropy loss and Adam optimization, with a standard

train/validation/test split (70/15/15) and early stopping to prevent overfitting. [1]

GA-NAS Integration

GA-NAS Process: Core Steps

-> Termination Condition Check

The algorithm checks if the stopping criterion is met. This could be a maximum number of generations (iterations), no

improvement in fitness over several iterations, or reaching a target accuracy. If the termination condition is satisfied,

the optimal architecture is found.

-> Selection (Survival of the Fittest)

If not terminated, the next step is selection, where the fittest individuals (highest-performing networks) are chosen

as parents to produce the next generation. Methods like tournament selection or roulette-wheel selection ensure that

better models have higher chances of being chosen while still maintaining diversity.

-> Crossover (Recombination)

In this stage, pairs of parent architectures exchange parts of their chromosomes to create offspring.

Example: Consider the Parent A:
[
3, 3, 3, 3, 3

]
and the Parent B:

[
2, 6, 4, 5, 3

]
. The the offspring:[

3, 6, 4, 3, 3
]

This combines beneficial traits (e.g., effective layer sizes or activation functions) from both parents.

-> Mutation

To introduce variation and prevent stagnation, some offspring undergo random small changes in their parameters.

Example mutations:

Changing an activation function (ReLU → GELU)

Adjusting kernel size (3 → 5)
Modifying dropout rate ( 0.5 → 0.1)

Mutation ensures continuous exploration of new architectures that might outperform the current best models.

Why GA-NAS Improves CNNAccuracy

1. Large Search Space Coverage

The space of possible CNN architectures is enormous (layers, filters, kernel sizes, activation functions, skip connections).

GA-NAS searches globally and does not get stuck in local optima early, allowing it to discover unconventional but high-

performing architectures.

2. Survival of the Fittest (Performance-Driven Search)

Only the best-performing CNN models survive each generation. This ensures that architectures evolve toward higher

classification accuracy over time.

3. Crossover Combines Strong Traits

When two strong CNN architectures are recombined, the offspring often inherit effective structural features (e.g.,

deeper layers, better kernel configurations). This accelerates the discovery of architectures that outperform handcrafted

models.

4. Mutation Introduces Novelty

Small random changes—such as altering kernel size or adding dropout—help explore new architectural possibilities that

would not arise through human design alone. Some of these novel architectures significantly improve generalization

and accuracy.

5. Automated Optimization of Hyperparameters and Structure

GA-NAS simultaneously optimizes multiple CNN components, such as depth, width, filter sizes, activation functions,

and regularization layers. Optimizing these together leads to CNNs that are better matched to the dataset’s complex-

ity.[2]

6. Robustness Against Overfitting

The evolutionary process naturally encourages architectures that generalize well, because poorly generalizing models

have lower fitness and are removed. This makes the final CNN more robust and accurate on unseen data.

Comparison Table

Aspect Original Architecture GA-NAS Architecture

Number of Layers 5 5

Neurons per Layer [32, 32, 64, 64, 128] [128, 64, 256, 128, 64]

Kernel Sizes [3, 3, 3, 3, 3] [2, 6, 4, 5, 3]

Activation Functions ReLU, ReLU, ReLU, ReLU, ReLU GELU, Tanh, ReLU, ReLU, Sigmoid

Dropout Rates 0.5 0.1

Overall Accuracy 93.77% 94.33%

Trainable Parameters 8,527,698 962,514

Network Size 97.7 MB 11.1 MB

Conclusions

Spectrograms derived from Short-Time Fourier Transform (STFT) efficiently capture

time-frequency features for HF signal classification.

A CNN classifier trained on spectrogram images performs well; performance varies across

SNR levels and benefits from data augmentation.

GA-NAS can reduce model size while improving or matching accuracy by searching

architectural hyperparameters using selection, crossover, and mutation.[5]
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