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Motivation

Electroencephalography (EEG) is used to measure electrical activity in the brain through

the placement of electrodes on the scalp.

- The electrodes provide punctual values (measurements) of the electrical signal.

- The electrical activity is generated by neurons located inside the brain.

Figure 1. Demonstrating how measurements are

made with EEG.

Before being measured, the signal passes through different layers in the head as illustrated

in Figure 1.

Three layers on the head will be considered:

• the scalp,

• the skull,

• the brain.

Questions:

• Can we recover the full electrical potential inside the head using only the EEG measure-

ments on the scalp?

• Each layer has its own conductivity. If two conductivities are known, can we determine

the third one from the measured data?

Mathematical Modeling of EEG

Inside the brain, neuronal activity creates localized electrical currents. Each active region

can be modeled by a current dipole inside the brain domain. Each dipole is defined by the

following parameters:

• the location Cq ∈ Ω0,

• its moment vector pq ∈ R3, indicating the direction and strength of the current.

Restricting the electric potential, u(x, y, z), to the brain domain, the conductivities are

given as functions σk(x, y, z).

σ0 denotes the conductivity in the brain, Ω0.

σ1 the conductivity in the bone, Ω1.

σ2 represents the conductivity of the scalp, Ω2.

Figure 2. Layered model of the head with associated conductivities and dipoles (in red)

represented.

The Direct Problem

Defining the direct problem as the calculation of electrical potential on the scalp, the

following protocol is used:

1: Let:

2: S := electric current/potential source in brain

3: σk := conductivity on layer Ωk

4: rk := outer radius of layer k
5: Tk := transmission operator at interface rk (derived in [2])

6: ∆ := Laplace operator

7: ∆−1 := inverse Laplace operator

8: Procedure: DirectProblem(S, σk, rk, Tk)

9: Initialize potentials: u0 = ∆−1(S/σ0), u1 = 0, u2 = 0
10: for k = 1 to 2 do
11: Solve Laplace equation in layer k: uk = ∆−1(0)
12: Apply transmission conditions: Tk−1uk−1 = uk on rk−1
13: end for

14: Apply boundary condition on scalp: ∂νu2|r2
= 0

15: Evaluate scalp potential: h = u2(r2)
16: return h, uk(r)

As the electrical signals originate from the brain, the potential on the brain is initialized

with respect to the source. In the skull and scalp layers, no electrical potential is produced,

thus their respective initializations are set to 0.

Based on the relationships σk∆uk = Sk and σk∂νuk = σk−1∂νuk−1, the transmissions across

the bone and scalp layers are formalized. Lastly, the boundary condition on the scalp is

set to 0 since the air holds negligible electrical potential, and the potential on the scalp is

the result that is returned.

From the Direct Problem to the Inverse Problem

In practice, EEG provides the measured scalp potentials, while the conductivities inside

the head are unknown. The direct problem computes the potentials from known conduc-

tivities, but in applications we face the inverse problem:

Given the voltages measured on the scalp, can we recover the conductivity inside the

skull?
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Inverse problem

Direct problem

The direct problem predicts measurements; the inverse problem reconstructs internal parameters.

This setting is an example of a Calderón inverse problem: recovering the conductivity of

a medium from boundary voltage and current measurements, first posed by Calderón in

1980, see [1].

Dirichlet-to-Neumann Operator

Akey component in Calderón problems, the Dirichlet-to-Neumann (DtN) operator is a map

that relates the applied electric potential to the current density across a certain boundary:

Λσ : g 7→ σ ∂νu|∂Ω.

The Inverse Problem

In developing an algorithm for the inverse problem, the following values will be initial-

ized:

EEG measurements,

the arc on the scalp where the measurements are taken,

locations of the sources within the brain,

number of defined layers.

For simplicity, the conductivity of each layer has been assumed piecewise constant. The

algorithm will reconstruct an approximation of the conductivity, σ1 or σN−2 given that

N≥3.

In a more realistic case, the domain geometry should also be reconsidered to resemble

the shape of a head more closely. While this example takes constant conductivity, the

non-constant case will also be examined.

Approximation schemes like interpolation will be utilized for the calculation of the con-

ductivities. With this calculation in mind, the following theorem will be explored and

verified:

Given u(x, y, z) on Ω and for any ε > 0, there is a continuous differentiable σ̃N−2 such

that

|σN−2(x, y, z) − σ̃N−2(x, y, z)| < ε

and the following conditions are fulfilled:

∆ui = 0 on Ωi for i ∈ {1, 2}
∆u0 = S on Ω0

σ2∂νu2 = σ1∂νu1 on ∂Ω1 ∩ ∂Ω2 and σ1∂νu1 = σ0∂νu0 on ∂Ω0.
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