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Background

Dynamical systems like particle models and cellular automota are used to model physical phenom-

ena and study computer algorithms. They are also rich sources of mathematical inquiry.

This poster presents a particle model based on the paper [3]. The original model studied in that

paper has its origins in understanding self-organizing binary search trees.

The particle model

Fix n ∈ Z+. Take a collection of n + 1 identical particles and place them on a number line, at

positions 0, 1, . . . , n.

· · ·
0 1 2 3 4 · · · n

Wewill evolve this system over the course of n iterations, moving particles one at a time until they

all end up at position 0.
(1) Choose a particle at a positive position 1, 2, . . . , n uniformly at random.

(2) Move the particle left at a rate of 1 unit per timestep.

(3) When two particles coincide, the two particles coalesce into a single particle, and movement

stops.

(4) Repeat steps (1)–(3) until all particles have coalesced with the particle at position 0.

Note that the amount of timesteps that occur in one iteration depends on the order in which

particles are chosen.

Example evolution

Set n = 5. Here is one possible evolution:

0 1 2 3 4 5
(+1 timestep)

0 1 2 3 4 5
(+1 timestep)

0 1 2 3 4 5
(+2 timesteps)

0 1 2 3 4 5
(+1 timestep)

0 1 2 3 4 5
(+2 timesteps)

0 1 2 3 4 5
(Finish!)

Define the coalescence time of the system to be the total number of timesteps that it takes for

the evolution to finish. The coalescence time is a random variable, which we denote by Tn.

Notice that the system evolution is completely determined by the order in which particles are

chosen. Suppose the particle starting at position j ∈ [n] is chosen during iteration σj ∈ [n]. Then
the permutation

σ = σ1σ2 . . . σn ∈ Sn

gives the selection order permutation for the system.

Example. In the previous example, we have σ = 25413 ∈ S5 with Tn = 1 + 1 + 2 + 1 + 2 = 7.

A bijection with recursive rooted trees

The book [5] describes a standard bijection between Sn and recursive rooted

trees on n + 1 nodes. After a slight modification, this bijection sends the coa-

lescence time of a selection order permutation to the total path length of the

resulting tree, which is the sum of the root-to-node distances in the tree.

Example. In the tree at right, the root-to-node distance for the node 3 is 2while
the root-to-node distance for the node 7 is 3. The total path length is 12.
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Example of the modified bijection

Start by reversing σ and inverting the values of each of its entries:

σ = 25413 7→ 31452 7→ 35214
Prepend a 0 to the front of the resulting string. Re-interpret the string as a sequence of substrings,
where the j-th substring in the sequence contains only the numbers 0, 1, . . . , j:

0 ; 01 ; 021 ; 0321 ; 03214 ; 035214
Recursively build a tree as follows: Start with a root node labeled 0. On step j, look at the j-th
substring, find the number to the immediate left of j in the substring, and append a node labeled

j to the node with that number in the tree.
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The tree constructed at the very end is the result of the bijection.

The scaling limit of Tn

Give the set of recursive rooted trees on n + 1 nodes the uniform distribution. Under the bijection,

Tn is equal in distribution to the total path length of a recursive rooted tree.

Theorem (Dobrow and Fill, [2]). Let U ∼ Unif([n]), and let Tj, T ′
j be copies of the total path length

random variable for j ∈ {0, 1, . . . , n − 1}, all variables mutually independent. Then

Tn
d= TU−1 + Tn−U + U.

The scaling limit of Tn (i.e. the distribution you get by normalizing and sending n → +∞) was first

studied in [4]. In [2], the recursion is used to show that the scaling limit is not normal!
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Above is a histogram of 5 × 105 simulated values of Tn after normalizing, for n = 105.

q-analogues

A q-analogue of an object is a parametrized version of the object, depending on a value q, such
that sending q → 1 in the limit recovers the original object. In several branches of mathematics,

q-analogues appear as natural generalizations of objects. We highlight some examples.

Let q > 0 and n ∈ Z+.

q-integers. Define nq := 1 + q + q2 + · · · + qn−1.

q-factorials. Define n!q := 1q · 2q · · · nq.

q-harmonic numbers. Define Hn(q) :=
∑n

j=1(1/jq).
Discrete q-uniform distribution. We say that Un(q) has the discrete q-uniform distribution if it

has support [n] and satisfies

Prob(Un(q) = j) = qn−j/nq, j ∈ [n].

The inversion count inv σ of σ = σ1σ2 . . . σn ∈ Sn is the number of pairs i < j with σi > σj.

Example. For σ = 25413, we have inv σ = 6.
We say that a permutation-valued randomvariableΠwith support Sn has theMallows(q) distribution
if it satisfies

Prob(Π = σ) = qinv σ/n!q, σ ∈ Sn.

This is a q-analogue of the uniform distribution on Sn.

Results

Theorem. If the selection order permutation is Mallows(q), then E[Tn] =
∑n

j=1 Hj(q).

Theorem. Suppose the selection order permutation is Mallows(q). Let Un(q) be discrete q-uniform, and

let Tj, T ′
j be copies of the coalescence time variable for j ∈ {0, 1, . . . , n − 1}, all variables mutually

independent. Then

Tn
d= TUn(q)−1 + Tn−Un(q) + Un(q).

Discussion

The q-analogue
∑n

j=1 Hj(q) is not the usual q-analogue of the “hyper-harmonic number” that

appears in the literature.

“Mallows(q)-distributed binary trees” have been studied before in [1]. Under the bijection

with recursive rooted trees, we have “Mallows(q)-distributed recursive rooted trees” instead.

As far we can tell, these have not yet been studied!

Ongoing work is to determine the asymptotic growth rate for the variance of Tn when q < 1
and q > 1 and to determine the limit of the distribution for Tn when sending n → +∞ before

or after sending q → 1.
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