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Background

Dynamical systems like particle models and cellular automota are used to model physical phenom-
ena and study computer algorithms. They are also rich sources of mathematical inquiry.

This poster presents a particle model based on the paper [3]. The original model studied in that
paper has its origins in understanding self-organizing binary search trees.

The particle model

Fix n € Z,. Take a collection of n + 1 identical particles and place them on a number line, at

positions 0,1, ..., n.
o 0O O O O - O
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()

We will evolve this system over the course of n iterations, moving particles one at a time until they
all end up at position 0.

(1) Choose a particle at a positive position 1,2, ..., n uniformly at random.

(2) Move the particle left at a rate of 1 unit per timestep.

(3) When two particles coincide, the two particles coalesce into a single particle, and movement
stops.

(4) Repeat steps (1)-(3) until all particles have coalesced with the particle at position 0.

Note that the amount of timesteps that occur in one iteration depends on the order in which
particles are chosen.

Example evolution

Set n = 5. Here is one possible evolution:

Q Q Q QA. @ (+1 timestep)
0 1 2 3 4 5

QA. Q Q @ (+1 timestep)
0 1 2 3

4 O

Q Q QWV‘ (+2 timesteps)
2 3 4 5

0 1
Q QK\. (+1 timestep)
0 1 2 3 4 5
Qv. (+2 timesteps)
0 1 2 3 4 5

() (Finish!)

0 1 2 3 4 O

Define the coalescence time of the system to be the total number of timesteps that it takes for
the evolution to finish. The coalescence time is a random variable, which we denote by T;,.

Notice that the system evolution is completely determined by the order in which particles are
chosen. Suppose the particle starting at position j € [n] is chosen during iteration o; € [n]. Then
the permutation

o=0109...0n €Sy

gives the selection order permutation for the system.

Example. In the previous example, we have 0 = 25413 € Sswith T, =1+1+2+1+2=T.
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A bijection with recursive rooted trees

The book [5] describes a standard bijection between §,, and recursive rooted
trees on n + 1 nodes. After a slight modification, this bijection sends the coa-
lescence time of a selection order permutation to the total path length of the
resulting tree, which is the sum of the root-to-node distances in the tree.

Example. In the tree at right, the root-to-node distance for the node 3 is 2 while
the root-to-node distance for the node 7 is 3. The total path length is 12.

Example of the modified bijection

Start by reversing o and inverting the values of each of its entries:
o = 25413 — 31452 +— 35214

Prepend a 0 to the front of the resulting string. Re-interpret the string as a sequence of substrings,
where the j-th substring in the sequence contains only the numbers 0,1, ..., 7:

0~ 01 ~ 021 ~ 0321 ~ 03214 ~ 035214

Recursively build a tree as follows: Start with a root node labeled 0. On step 7, look at the j-th
substring, find the number to the immediate left of 5 in the substring, and append a node labeled
7 to the node with that number in the tree.

RO

The tree constructed at the very end is the result of the bijection.

The scaling limit of 7,

Give the set of recursive rooted trees on n+ 1 nodes the uniform distribution. Under the bijection,
T, 1s equal in distribution to the total path length of a recursive rooted tree.

Theorem (Dobrow and Fill, [2]). Let U ~ Unif([n]), and let Tj,T]’. be copies of the total path length
random variable for j € {0,1,...,n — 1}, all variables mutually independent. Then

d
Th=Ty_1+T,_y+U.

The scaling limit of T;, (i.e. the distribution you get by normalizing and sending n — +o00) was first
studied in [4]. In [2], the recursion is used to show that the scaling limit is not normal!
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Above is a histogram of 5 x 10° simulated values of T}, after normalizing, for n = 10°.
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g-analogues

A g-analogue of an object is a parametrized version of the object, depending on a value ¢, such
that sending ¢ — 1 in the limit recovers the original object. In several branches of mathematics,
g-analogues appear as natural generalizations of objects. We highlight some examples.

letg>0andn € Zy.

= g-integers. Defineng == 1+q+¢*+---+¢" L.
" g-factorials. Define nly :=14-24---nq.
= g-harmonic numbers. Define Hy(q) := 2?21(1/121)-

= Discrete ¢-uniform distribution. We say that U,,(q) has the discrete ¢g-uniform distribution if it
has support [n| and satisfies

Prob(Un(q) = 7) = ¢/ /ng, j € [n).

The inversion count invo of o = g109...0p € Sy IS the number of pairs i < j with o; > 0.
Example. For o = 25413, we have invo = 6.

We say that a permutation-valued random variable IT with support S;, has the Mallows(g) distribution
If it satisfies |
Prob(Il = o) = ¢ /nly, o € Sp.

This is a g-analogue of the uniform distribution on §,,.

Results
Theorem. If the selection order permutation is Mallows(q), then E[T},] = Z?Zl Hi(q).
Theorem. Suppose the selection order permutation is Mallows(q). Let Uy, (q) be discrete g-uniform, and
let T7, T]’. be copies of the coalescence time variable for j € {0,1,...,n — 1}, all variables mutually

independent. Then
d
Tn — TUn(q)—l + Tn—Un(q) + Un(Q)

Discussion

= The g-analogue Z?Zl H(q) is not the usual g-analogue of the "hyper-harmonic number” that
appears in the literature.
= “Mallows(g)-distributed binary trees” have been studied before in [1]. Under the bijection

with recursive rooted trees, we have “Mallows(g)-distributed recursive rooted trees” instead.
As far we can tell, these have not yet been studied!

= Ongoing work is to determine the asymptotic growth rate for the variance of T, when ¢ < 1
and ¢ > 1 and to determine the limit of the distribution for T}, when sending n — +oo before
or after sending ¢ — 1.
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