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Introduction and Motivation
In his 1995 paper, Bagby asks how to compute standard normal probabilities without using tables.

For a standard normal random variable X ∼ N(0, 1) and a > 0,

P (a) = Pr(0 < X < a) = 1√
2π

∫ a

0
e−x2/2 dx,

an integral with no elementary antiderivative.

Before personal computers were widespread, such probabilities were read from long tables or

approximated roughly. Bagby’s goal is to construct a simple, explicit, accurate approximation Q(a)
that

is easy for hand or calculator computation,

is very accurate on the range 0 < a . 3 used in statistics,

can replace tables in many practical settings.

The One-Dimensional Integral P (a)
The starting point is

P (a) = Pr(0 < X < a) =
∫ a

0
ϕ(x) dx, ϕ(x) = 1√

2π
e−x2/2.

Geometrically, P (a) is the area under the bell-shaped density between 0 and a.
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Standard normal density and P(a) (here a = 1.5)

Area under the standard normal curve giving P (a) (example with a = 1.5).
Bagby’s strategy is:

transform this difficult 1D integral using multivariable calculus and numerical analysis;

then return to an explicit approximation Q(a) for P (a).

Accuracy and Refinements for P (a)
Applying the quadrature rule to ∫ π/4

0
e−1

2a2 sec2 θ dθ

uses only three function values and two endpoint derivatives in θ. For this specific integrand,

f (0), f
(

π
8
)
, f
(

π
4
)
, f ′(0), f ′(π

4
)

can all be written in terms of elementary exponentials, giving an explicit approximation Q(a) built
from three exponential terms.

Bagby’s numerical comparisons show that

|Q(a) − P (a)| . 3 × 10−5 for 0 < a . 3,

and the error tends to 0 as a → 0 or a → ∞.

Subdividing [0, π/4] (for instance into [0, π/8] and [π/8, π/4]) can further reduce the error, but the

basic three–function-value rule already outperforms standard four-decimal normal tables.

From One Dimension to Two Dimensions
Let X, Y be independent N(0, 1) random variables. For a > 0,

P (a) = Pr(0 < X < a), P (a)2 = Pr(0 < X < a, 0 < Y < a).
Using the joint density of (X, Y ),

P (a)2 = 1
2π

∫ a

0

∫ a

0
e−(x2+y2)/2 dy dx.

Thus the square of a one-dimensional probability becomes a double integral over the square

[0, a] × [0, a], with an integrand that depends only on x2 + y2.

From Product to Double Integral
The continuous identity above mirrors a discrete “sum of sums” picture. Let

A =
n∑

i=1

ai, B =
m∑

j=1

bj.

Then

AB =

(
n∑

i=1

ai

) m∑
j=1

bj

 =
n∑

i=1

m∑
j=1

aibj.

Riemann sums behave the same way:∑
i

f (xi) ∆x and
∑

j

f (yj) ∆y

have product ∑
i

∑
j

f (xi)f (yj) ∆x ∆y,

which in the limit gives ∫ a

0

∫ a

0
f (x)f (y) dy dx.

In our case f (t) = e−t2/2, so

P (a)2 = 1
2π

∫ a

0

∫ a

0
e−(x2+y2)/2 dy dx.

From Double Integral to a θ-Integral
Because e−(x2+y2)/2 depends only on x2 + y2, polar coordinates are natural:

x = r cos θ, y = r sin θ, dx dy = r dr dθ.

On the square (0, a) × (0, a) in the first quadrant,

0 ≤ θ ≤ π

4
, 0 ≤ r ≤ a sec θ.

Therefore

P (a)2 = 1
2π

∫ π/4

0

∫ a sec θ

0
e−r2/2 r dr dθ.

Integrating first in r gives ∫ a sec θ

0
e−r2/2r dr = 1 − e−1

2a2 sec2 θ,

so

P (a)2 = 1
π

∫ π/4

0

(
1 − e−1

2a2 sec2 θ
)

dθ = 1
4

− 1
π

∫ π/4

0
e−1

2a2 sec2 θ dθ.

The problem is now reduced to approximating a single integral in θ.

Big Picture: A High-Order Quadrature Rule
Bagby’s next goal is to build a very accurate rule for∫ b

a

f (x) dx,

and then apply it to ∫ π/4

0
e−1

2a2 sec2 θ dθ.

The resulting rule has the shape∫ b

a

f (x) dx ≈ b − a

30

(
7f (a) + 16f

(
a+b

2
)

+ 7f (b)
)

− (b − a)2

60
(
f ′(b) − f ′(a)

)
,

plus an explicit error term involving f (6).

Main ideas:

use repeated integration by parts with a carefully chosen polynomial K(x);
compare a “one-interval” rule and a “two-interval” rule;

combine them so leading error terms cancel (Richardson extrapolation).

Constructing the Quadrature Rule
On a symmetric interval [−h, h] Bagby chooses a polynomial K with

K(6)(x) ≡ 1, K(h) = K ′(h) = K(3)(h) = 0.

Integrating by parts several times yields, for smooth f ,∫ h

−h

f (x) dx =
[
K(5)f − K(4)f ′ − K(2)f (3)]h

−h
+
∫ h

−h

K(x) f (6)(x) dx.

A general solution of K(6) ≡ 1 is a degree-6 polynomial. Imposing evenness and the boundary

conditions at x = h leads to

K(x) = 1
720

(x2 − h2)2(x2 − 3h2).

After shifting to a general center c (writing x = c + t), this produces a refined trapezoid-type rule

on [c − h, c + h] with an explicit error term involving f (6).

Error Structure and Final Formula
Applying the construction on [c − h, c + h] (one interval) and on the two halves [c − h, c], [c, c + h]
(two intervals) gives two approximations to

I =
∫ c+h

c−h

f (x) dx

whose error expansions have different h4-terms.

Richardson extrapolation chooses a linear combination of these two rules so that the h4-terms

cancel. After simplification Bagby obtains∫ c+h

c−h

f (x) dx = h

30
[
7f (c + h) + 16f (c) + 7f (c − h)

]
− 11

60
h2[f ′(c + h) − f ′(c − h)

]
+ 1

3600

∫ h

−h

[
f (6)(c + x) + f (6)(c − x)

]
x(x − h)4(5x2 + 4hx + h2) dx.

The first two lines give the practical rule; the last line is an exact error term. The polynomial

weight

x(x − h)4(5x2 + 4hx + h2)

has a fixed sign on (0, h), so by the mean value theorem

Error = C h7f (6)(ξ)
for some ξ ∈ (c − h, c + h) and constant C > 0.
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